TWO NEW TERTIARY INDOLE ALKALOIDS OF STRYCHNOS DECUSSATA

Ajibola A．Olayifi and Wevche N．A．Rolfsen ${ }^{2}$
Department of Pharmacognosy，Faculty of Pharmacy，Box 5i9，Biomedical Center， University of CDpsala，S－テ5123 じppsala，Sizeden

Abstract．－From the chloroform fraction of the stem bark of Strychnos decussata （Pappe）Gilg（Loganiaceae），two new tertiarv indole alkaloids， 10 －hydroxyakagerine （1）and akagerinelactone（3），have been isolated．The structures of the alkaloids have been elucidated by means of their spectral data，particularly ${ }^{1} \mathrm{H}-\mathrm{nmr}$ and ${ }^{13} \mathrm{C}-\mathrm{nmr}$ ．

In a recent publication，we reported the isolation of five tertiary indole alka－ loids，three of which were new，from the stem bark of Strychnos decussata（1）．In continuation with our studies of the convulsant and muscle－relaxant constituents of S ．decussata，we have now isolated two more indole alkaloids from the chloro－ form fraction of the stem bark．

RESULTS ANDD DISCUSSION

The proposed structures are presented in the figure．
Alkaloid 1 analyzed for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3}\left(\mathrm{II}^{+}, 340.1795\right) ; \mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3}$ requires 340.1787 ．The alkaloid＇s uv spectrum，which was strikingly similar to that of $10-$ hydroxy－17－O－methylakagerine，showed a bathochromic shift on addition of alkali， suggesting the presence of a phenolic function．The ir spectrum showed absorp－ tion peaks at $3280 \mathrm{~cm}^{-1}(-\mathrm{OH})$ and at $1665 \mathrm{~cm}^{-1}(-\mathrm{C}=\mathrm{O})$ ．A comparison of the ms of alkaloid 1 with that of akagerine（2）showed a constant difference of 16 mass units higher values for the fragments containing the aromatic moiety in alkaloid 1. The ${ }^{1} \mathrm{H}-\mathrm{nm}$ r spectrum of alkaloid \mathbf{l} exhibited signals for an aldehydic proton at $\delta 9.22(1 \mathrm{H}, s)$ ，an ethylidene chain at $\delta 6.52(1 \mathrm{H}, q)$ and $\delta 2.04(3 \mathrm{H}, d)$ ，and three aromatic protons in the region $\delta 7.10-6.62$ ．This is almost identical with the ${ }^{1} \mathrm{H}$－nmr spectrum of 10 －hydroxy－17－O－methylakagerine，except for the absence of

$\underset{\sim}{1}$ ； $\mathrm{R}=\mathrm{OH}$
$\underset{\sim}{2} ; R=H$ $\stackrel{3}{\sim}$

[^0]a three-proton singlet for a methoxy group in 1, suggesting that alkaloid $\mathbf{1}$ is $10-$ hydroxyakagerine.

Alkaloid 3 analyzed for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3}\left(\mathrm{II}^{+}, 338.1655\right)$; $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3}$ requires 338.1657. The uv spectrum of this alkaloid was typical of akagerine-like compounds (1). The ir spectrum of alkaloid 3 showed a strong absorption at 1735 cm^{-1}, suggesting the presence of an α, β-unsaturated lactone. The ${ }^{1} \mathrm{H}-\mathrm{nmr}$ spectrum of alkaloid 3 was very similar to that of akagerine, differing only in the protons of the side chain, $\mathrm{H}-18, \mathrm{H}-19$ and $\mathrm{H}-21$. The signals due to the aldehydic proton, $\delta 9.24(1 \mathrm{H}, s)$, and the ethylidene chain protons, $\delta 6.43(1 \mathrm{H}, q)$ and $\delta 2.03(3 \mathrm{H}$, d), present in the ${ }^{1} \mathrm{H}-\mathrm{nmr}$ of akagerine were replaced by a two-proton triplet and a one-proton multiplet resonating at $\delta 4.80$ and $\delta 7.12$, respectively, in the spectrum of alkaloid 3. The assignments of the spectrum were carried out by decoupling experiments, further supporting a lactone ring in alkaloid 3. Irradiating the signals at $\delta 4.80$ and at $\delta 7.12$ revealed coupling between $\mathrm{H}-18$ and $\mathrm{H}-19$. Further decoupling studies showed long range coupling both between $83.45(\mathrm{H}-15)$ and $\delta 7.12(\mathrm{H}-19)$ and between $\delta 3.45$ and $\delta 4.80(\mathrm{H}-18)$. The ${ }^{19} \mathrm{C}-\mathrm{nmr}$ spectrum of alkaloid $\mathbf{3}$ was also similar to the spectrum of akagerine-like compounds, except for the carbons in the side chain. The signals for $\mathrm{C}_{18}\left(\mathrm{CH}_{3}, 15.1\right), \mathrm{C}_{19}(\mathrm{CH}$, $150.7), \mathrm{C}_{20}(\mathrm{C}, 147.8)$, and $\mathrm{C}_{21}(\mathrm{H}-\mathrm{C}=\mathrm{O}-, 195.0)$ in akagerine disappeared in the ${ }^{13} \mathrm{C}-\mathrm{nmr}$ spectrum of alkaloid 3; the following signals were observed instead: CH_{2} (70.23), CH (144.11), C (138.21) and C (173.40), respectively. The signals of the ${ }^{1} \mathrm{H}-\mathrm{nmr}$ and ${ }^{13} \mathrm{C}-\mathrm{nmr}$ of alkaloid 3 are in full accord with the replacement of the ethylidene-aldehyde side chain in akagerine by a lactone ring in alkaloid 3, for which the name akagerinelactone has been given.

Further evidence for the presence of a lactone ring was provided by positive color reactions with reagents for the detection of an unsaturated lactone group.

Comparing the values of the ${ }^{1} \mathrm{H}-\mathrm{nmr}$ and ${ }^{13} \mathrm{C}-\mathrm{nmr}$ spectra of akagerinelactone and akagerine, it is most likely that the configuration at the asymmetric carbons $\mathrm{C}-3, \mathrm{C}-15$ and $\mathrm{C}-17$ are the same in the two alkaloids.

No pharmacological testing of the two new alkaloids was performed due to the limited amount of material isolated.

EXPERIMENTAL ${ }^{3}$

Details of plant collection, extraction and chromatographic procedures have been reported elsewhere (1).

10-Hydroxyakagerine (1).-Purified by preparative tle using cyclohexane-chloroform-
 powder (8.5 mg) $\mathrm{mp} 154-156^{\circ}$. It gave uv: $\lambda \max (\log \epsilon$) (ethanol): 230.5 (4.38), 280 (3.93), 308 (sh, 3.60) and 312 (3.52) nm; $\lambda \max (\log \epsilon)$ (addition of KOH): 232 (4.74), 279 (3.89) and 322 (3.54) nm; ir: $\nu \max (\mathrm{KBr}): 3280,2900,2820,1665,1620,1460,1360,1210,1150,1100,900,830$ and $785 \mathrm{~cm}^{-1} ; \mathrm{ms}: m / z(\%): 340\left(11, \mathrm{M}^{-}\right), 322(17), 293(7), 276$ (5), 253 (14), 214 (7), 202 (16), 201 (100), 200 (27), $187(10), 172$ (11), $160(6), 159(6), 144$ (5) and 143 (2); ${ }^{1} \mathrm{H}-\mathrm{nmr}\left(\mathrm{CDCl}_{5}\right)$: $\delta 9.22(1 \mathrm{H}, s, \mathrm{H}-21), 7.10(1 \mathrm{H}, d, J=9 \mathrm{~Hz}, \mathrm{H}-12), 6.70(1 \mathrm{H}, d, J=2 \mathrm{~Hz}, \mathrm{H}-9), 6.62(1 \mathrm{H}, d d, J=$ $9 \mathrm{~Hz}, 2 \mathrm{~Hz}, \mathrm{H}-11), 6.52(1 \mathrm{H}, q, J=7 \mathrm{~Hz}, \mathrm{H}-19), 6.04(1 \mathrm{H}$, broad $s, \mathrm{H}-17), 2.48\left(3 \mathrm{H}, s, \mathrm{~N}-\mathrm{CH}_{3}\right)$ and $2.04(3 \mathrm{H}, d, J=7 \mathrm{~Hz}, \mathrm{H}-18) \mathrm{ppm}$.

[^1]Akhgerinelactone (3).-On purification by preparative tle using diethyl ether-ethanoldiethylamine $90: 3: 7$) as mobile phase, akagerinelactone crystallized from ethanol/diethyl ether as colorless needles (17 mg), mp 184-186 . It gave uv: λ max ($\log \epsilon$ (ethanol) 222 (4.33), 276 (3.90), 283 (3.91) and 293 (3.80) nm; ir: ν max (KBr) : 3350, 3000, 2900, 2820, 2760, 1735, 1640, 1600, $1460,1380,1350,1310,1270,1200,1190,1090,1060,1040,980$, and $735 \mathrm{~cm}^{-1}: \mathrm{ms}: \mathrm{m} / \mathrm{z}(\mathrm{C}): 338$ (9, М I^{-}), $323(4), 320(\overline{6}), 214(6), 198(8), 186(15), 185(100), 183(10), 171(18), 169$ (5), 156 (13) , 144 (8) and 143 (6): ${ }^{1} \mathrm{H}-\mathrm{nmr}:\left(\mathrm{CDCl}-\mathrm{CD}_{3} \mathrm{OD}\right.$): $\delta 7.58-7.16$ ($4 \mathrm{H}, m, \mathrm{H}-9, \mathrm{H}-10, \mathrm{H}-11, \mathrm{H}-12$), $7.12(1 \mathrm{H}, m, \mathrm{H}-19), 6.30(1 \mathrm{H}, m, \mathrm{H}-17), 4.80(2 \mathrm{H}, t, J=1 \mathrm{~Hz}, \mathrm{H}-18)$ and $8.45(1 \mathrm{H}, m, \mathrm{H}-15)$ and $2.59\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}-\mathrm{CH}_{s}\right) \mathrm{ppm}:{ }^{13} \mathrm{C}-\mathrm{nmr}:\left(\mathrm{CDCl}_{5}-\mathrm{CD}_{3} \mathrm{OD}\right) \mathrm{C}-2 \quad 136.11$, ${ }^{*} \mathrm{C}-3 \quad 60.04, \mathrm{C}-5 \quad 50.58$,
 $\begin{array}{lllllllllllll}\mathrm{C}-13 & 135.40^{*}, \mathrm{C}-1 \pm & 38.81, \mathrm{C}-15 & 29.06, ~ \mathrm{C}-16 & 36.66, \mathrm{C}-17 & 75.04, \mathrm{C}-18 & 70.23, \mathrm{C}-19 & 14.11 \text {, }\end{array}$ C-20 138.21, C-21 173.40 and $\mathrm{N}-\mathrm{CH}_{8} \pm 2.15 \mathrm{ppm}$.

ACKNOWLEDGMENTS

We thank Mr. P. Jahnke, Biomedical Center, Uppsala University, for recording the mass spectra, and Mr. G. Everitt, National Board of Health, Division of Drugs, Eppsala, for the nmr spectra. We are also very grateful to Dr. T. Nishida, Tobacco Company, Stockholm, for discussions of the ${ }^{33} \mathrm{C}-\mathrm{nm}$ spectrum. Our sincere thanks go to Drs. L. Bohlin and R. Verpoorte for reading and commenting on the manuscript. We gratefully acknowledge Prof.F.Sandbergs' interest and useful advice.

Received 18 January 1980.

LITEPATURE CITED

1. W. N. A. Rolfsen, A. A. Olanivi and P. J. Hylands, J. Nat. Prod., 43, 97 (1980).
2. H. H. S. Fong, M. Tin-Wa and N. R. Farnsworth, Phytochemical Screening, Dept. of Pharmacognosy and Pharmacology, Univ. of Illinois at the Medical Center, Chicago, Illinois.
3. E. Stahl, Dünnschichtchromatographie, Springer Verlag, Berlin, Heidelberg, New York (1967).
4. Anfarbereagenzien für Dünnschicht- und Papier Chromatographie, E. Merck, Darmstadt.
[^2]
[^0]: Present address：Dept．of Pharmacentical Chemistry，Faculty of Pharmacy，University of Ife，Ile－Ife，Nigeria．
 ${ }^{2}$ To whom correspondence should be addressed．

[^1]: ${ }^{3}$ The uv spectra were run on a Shimadzu MPS-5000 UV-VIS spectrophotometer, the ir spectra on a Jasco-IRA-I-spectrophotometer and the ms spectra on an LKB 9000 instrument at 70 eV with direct inlet system. ${ }^{1} \mathrm{H}-\mathrm{nm}$ spectra were run on a Jeol 100 MHz spectrometer and the ${ }^{18} \mathrm{C}$-nmr spectrum was recorded on a Varian 100 MHz instrument at 25.2 MHz in the Fourier transform mode. Melting points were determined with a Leitz mikroskopheitztisch 350. Preparative thin-layer chromatography (tle) was carried out on either precoated silica. gel plates (0.25 mm , silica gel Si60 F_{234}, E. Merck) or on a 0.50 mm layer of silica gel (type 60, GF $2 \mathrm{pa4}$, E. Merck) spread on $20 \times 20 \mathrm{~cm}$ glass plates.

 Reagents used for the detection of unsaturated lactones on tle: Keddes reagent [2], Baljets reagent [2], Raymonds reagent [3], Legals reagent [4] and hydroxyl ammonium chloride: ferric (III) chloride [4].

[^2]: *(Assignment may be reversed.)

